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SEPARATION IMPACT ON A PLATE FLOATING ON THE SURFACE

OF AN IDEAL INCOMPRESSIBLE FLUID IN A BOUNDED TANK

UDC 532.582.33M. V. Norkin

The paper studies the planar problem of separation impact on a plate floating on the surface of an
ideal incompressible fluid in a bounded tank. The problem is solved using an asymptotic method
under the assumption that the immovable rigid walls of the tank are at a large distance from the
plate. It is concluded that the tank walls of arbitrary shape have an ambiguous effect on the fluid
particle separation zone formed on the plate surface is revealed. Examples of solutions are given.
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The problem of hydrodynamic separation impact was formulated by Sedov [1], who developed methods for
calculating the pulsed loads acting on a body and fluid motions using the theory of functions of a complex variable.
Using the methods described in [1], analytical solutions were derived for several specific cases [1–4]. The planar
problem of separation impact on floating bodies was numerically solved in [5]. In all studies of separation impact,
the fluid was assumed to be infinite.

In the present paper, we study the planar problem of separation impact on a plate floating on the surface of
an ideal incompressible fluid in a bounded tank. A solution of the problem is derived using an asymptotic method
based on the assumption that the immovable rigid tank walls are at a large distance from the plate. Previously,
this approach has been used to solve the spatial problem of separation-free impact on floating bodies [6–8].

1. Formulation of the Problem. We consider the planar problem of vertical impact on a plate floating
on the surface of an ideal incompressible fluid in a bounded tank. Upon impact, the fluid particles are assumed
to separate from the plate surface (separation impact). Let the body and the fluid be at rest before the impact.
Then, after the impact, the fluid motion is potential and the velocity potential Φ of the fluid particles induced by
the impact is determined by solving a mixed boundary-value problem of potential theory with an a priori unknown
contact area [1]:

∆Φ = 0, r ∈ D; (1.1)

Φ 6 0,
∂Φ
∂y

= Vn, r ∈ S11; (1.2)

Φ = 0,
∂Φ
∂y
> Vn, r ∈ S12; (1.3)

Φ = 0, r ∈ S2; (1.4)

∂Φ
∂n

= 0, r ∈ S3. (1.5)

Here D is the region occupied by the fluid, Vn = v0 − ωx, r = (x, y), v0 and ω > 0 are the translational and
angular velocities of the plate induced by the impact, respectively, S1 = S11∪S12 is the plate surface, S11 = {y = 0,
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−a < x < c} is the part of the surface on which there is no separation of fluid particles, S12 = {y = 0, c < x < a} is
the separation zone, S2 is the free surface of the fluid, and S3 is the immovable rigid tank boundary. The pulse
pressure is Pt = −ρΦ (ρ is the fluid density). The Cartesian coordinates x and y are introduced such that the x axis
runs along the free-surface line, the y axis is directed vertically inward (into the fluid depth), and the coordinate
origin is at the center of the plate.

We assume that the boundary S3 is obtained by a homothetic transformation with center at the coordinate
origin and the coefficient h of a certain fixed surface S0

3 : S3 = hS0
3 (x = hx0, y = hy0).

Below, the following notation is used: D0 is the internal region with the boundaries y = 0 and S0
3 , G is the

half-plane y > 0, and Φ1 and c∞ are the velocity potential and separation point for h =∞, respectively.
In constructing asymptotic expressions for large h, boundary conditions (1.2) and (1.3) are conveniently

transformed to the following restrictions (r ∈ S1):

∂Φ
∂y
− Vn > 0; (1.6)

Φ
(∂Φ
∂y
− Vn

)
= 0; (1.7)

Φ 6 0. (1.8)

Relations (1.6)–(1.8) can be rewritten as one-side limitations for the new function −Φ. In this case, the
derivative of the function −Φ is calculated with respect to the outward normal to the region D. In this case,
the problem is formulated as a variational inequality that yields the theorem of existence and uniqueness of this
problem [9]. Thus, for a bounded region in Sobolev space H1(D) there is a unique solution of the problem of
hydrodynamic separation impact. We note that these issues for the problem of penetration of a rigid body into
water in a similar mathematical formulation were studied in [10].

To complete the formulation of the problem, it is necessary to separately write the momentum equation
and the angular momentum equation for the plate under impact. These equations define the relationship between
the external impact momentum and its point, on the one hand, and the impact-induced translational and angular
velocities of the plate, on the other hand. If the mass and moment of inertia of the plate are ignored, these equations
reduce to the relations

Px = 0, I + Py = 0, M − x0Py = 0. (1.9)

Here Px and Py are the components of the external impact momentum applied to the plate at the point (x0, 0) and
I and M are the total impact momentum and the angular momentum with respect to the coordinate origin acting
on the plate during the impact:

I = ρ

c∫
−a

Φ dx, M = −ρ
c∫
−a

xΦ dx. (1.10)

From equalities (1.9), we find the coordinate of the momentum point

x0 = −M/I. (1.11)

2. Solution for an Unbounded Fluid. We first solve the problem of separation impact on a plate floating
on the surface of an unbounded fluid (h = ∞). Placing the coordinate origin at the center of the segment [−a, c],
we arrive at the problem

∆u = 0, −∞ < x <∞, y > 0;

∂u

∂y
= v0 + ω

a− c
2
− ωx, y = 0, |x| < a+ c

2
; (2.1)

u = 0, y = 0, |x| > a+ c

2
; (2.2)

∂u

∂y
> v0 + ω

a− c
2
− ωx, y = 0,

a+ c

2
< x <

3a− c
2

; (2.3)

490



u 6 0, y = 0, |x| < a+ c

2
; (2.4)

u→ 0, x2 + y2 →∞, (2.5)
with the function u(x, y) = Φ(x − (a − c)/2, y). A solution of the Laplace equation that satisfies conditions (2.1),
(2.2), and (2.5) for any fixed c ∈ [−a, a] is obtained by separating the variables in Cartesian coordinates using the
method of pair integral equations. The solution is written in final form as

u = (v0 + ω(a− c)/2)u1 + ωu2, (2.6)
where

u1(x, y) =

∞∫
0

A(λ) exp (−λy) cosλx dλ, A(λ) =

(a+c)/2∫
0

ϕ(s)J0(λs) ds,

u2(x, y) =

∞∫
0

λB(λ) exp (−λy) sinλx dλ, B(λ) =

(a+c)/2∫
0

ψ(s)J0(λs) ds,

ϕ(s) = −s, ψ(s) = −s
3

4
+

1
4

(a+ c

2

)2

s.

The constant c is chosen such that conditions (2.3) and (2.4) are satisfied. Substitution of function (2.6)
into these equations yields the inequalities

v0 + ω
a− c

2
− ω

2
x > 0, x ∈

[
− a+ c

2
,
a+ c

2

]
,

ωx2 −
(
v0 + ω

a− c
2

)
x− ω

2

(a+ c

2

)2

> 0, x ∈
[a+ c

2
,

3a− c
2

]
.

The first inequality leads to the relation c 6 a/3 + 4v0/(3ω), and the second inequality, leads to the relation
c > a/3 + 4v0/(3ω). As a result, to determine the separation point c∞ and the velocity potential Φ1 on the plate
surface, we use the explicit relations

c∞ = a/3 + 4v0/(3ω); (2.7)

Φ1(x, 0) = −
√(a+ c∞

2

)2

−
(
x+

a− c∞
2

)2(
v0 +

ω

2
a− c∞

2
− ω

2
x
)
, −a < x < c∞. (2.8)

Determining the normal velocity component on the plate surface, it can be shown that it is continuous
everywhere on (−a, a).

Using Eqs. (1.10), (1.11), (2.7), and (2.8), we find the relationship between the momentum point x0 and the
separation point c∞:

x0 = −(5a− 3c∞)/8, c∞ = (5a+ 8x0)/3. (2.9)
Investigation of the problem of vertical separation-free impact of a plate showed that if the point of the exter-

nal impact momentum P lies within [−a/4, a/4], fluid particles do not separate from the plate surface. Otherwise,
separation occurs. Hence, the point x0 in formulas (2.9) must satisfy the inequalities −a 6 x0 < −a/4.

3. Asymptotic Expressions for Large h. The velocity potential Φ defined by formulas (1.1), (1.4), (1.5),
and (1.6)–(1.8) is sought for in the form of the series Φ = Φ1 + Φ2 + Φ3 + Φ4 + Φ5 + . . . . As a first approximation of
Φ1, we use the solution of the problem of separation impact on a plate floating on the surface of an unbounded fluid
(h = ∞). It is assumed that upon impact, the plate acquires the same translational and angular velocities as in
the case of a bounded region. At large distances from the plate, the function Φ1 can be expanded in the harmonic
series

Φ1 = − c1y

π(x2 + y2)
− 2c2xy
π(x2 + y2)2

− c3(3x2y − y3)
π(x2 + y2)3

− . . . , (3.1)

where

c1 =
ωπ

4

(a+ c∞
2

)3

, c2 = −ωπ(5a− 3c∞)
32

(a+ c∞
2

)3

,

c3 =
ωπ

64
(7a2 − 6ac∞ + 3c2∞)

(a+ c∞
2

)3

.

To eliminate the errors caused by the potential Φ1 on the immovable boundary S3, we consider this problem
for a bounded tank in the absence of the plate:

∆Φ2 = 0, r ∈ D, (Φ2)y=0 = 0,
(∂Φ2

∂n

)
S3

=
c1
π
Q1 +

2c2
π
Q2 +

c3
π
Q3, (3.2)
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where

Q1 =
∂

∂n

y

x2 + y2
, Q2 =

∂

∂n

xy

(x2 + y2)2
, Q3 =

∂

∂n

3x2y − y3

(x2 + y2)3
.

In this case, we can confine ourselves to the first three terms of series (3.1). The contribution of the remaining
terms to the asymptotic form of the potential Φ on S1 is on the order of O(h−5) as h→∞.

After the variable substitution x→ hx and y → hy in (3.2), the function f = f(x, y) = Φ2(hx, hy) is written
as

f =
c1
π
f1h
−1 +

2c2
π
f2h
−2 +

c3
π
f3h
−3, (3.3)

where the functions fi = fi(x, y) are determined by solving the following boundary-value problems in a fixed
region D0:

∆fi = 0, (fi)y=0 = 0,
(∂fi
∂n

)
S0

3

= (Qi)S0
3
, i = 1, 2, 3.

After the inverse variable substitution x → εx, y → εy, and ε = h−1 in (3.3), the functions fi(εx, εy) are
expanded in a Taylor series with center at the point ε = 0 (h =∞):

fi(εx, εy) = −ξiyε+ ηixyε
2 + µi(3x2y − y3)ε3/6 + . . . , i = 1, 2, 3,

ξi = −fiy, ηi = fixy, µi = fixxy = −fiyyy, i = 1, 2, 3,

where the partial derivatives are calculated at the point M0 = (0, 0). As a result, we obtain the following asymptotic
form of the potential Φ2, which is valid in any fixed (independent of h) neighborhood of the plate:

Φ2(x, y) = −c1ξ1
π

yh−2 −
[2c2ξ2

π
y − c1η1

π
xy
]
h−3 −

[c3ξ3
π

y − 2c2η2

π
xy − c1µ1

6π
(3x2y − y3)

]
h−4 + . . . .

After this, we must eliminate the errors caused by the potential Φ2 on the plate surface. For the function
u = Φ1 + Φ3, the corresponding problem is formulated as

∆u = 0, r ∈ G, (u)S2 = 0, (u)∞ = 0; (3.4)
∂u

∂y
− g > 0, u

(∂u
∂y
− g
)

= 0, u 6 0, y = 0, |x| < a, g = g(x) = v1 − ω1x− kx2,

v1 = v0 +
c1ξ1
π

h−2 +
2c2ξ2
π

h−3 +
c3ξ3
π

h−4, ω1 = ω +
c1η1

π
h−3 +

2c2η2

π
h−4, k =

c1µ1

2π
h−4.

The function u on the plate surface and the point corresponding to this function cu = min
c
{c (u(x, 0) = 0,

c < x < a}) are the second approximations of the velocity potential Φ on S1 and the separation point c, respectively;
Φ1 and c∞ were used as first approximations.

At this stage, if we confine ourselves to terms of order h−3 inclusive, the problem for u differs from the
problem for the potential Φ1 only in velocities. In this case, the function u on the plate surface and the point cu are
determined from formulas (2.7) and (2.8), in which Φ1 and c∞ are replaced by u and cu and v0 and ω are replaced
by v1 and ω1, respectively. Expanding the above formulas in power series in h−1 and retaining terms of order h−3,
we obtain the desired asymptotic expressions. However, for the further consideration, the next term of order h−4

must be taken into account.
Problem (3.4) with the quadratic function g is solved similarly to the problem for Φ1: for any fixed c on

the segment [−a, a], one first construct a solution of the mixed boundary-value problem with a half-plane, whose
boundary y = 0 has a segment [−a, c] separating the first-type and second-type boundary conditions; the point cu
is then determined from two conditions written as inequalities. The relations for the point cu and the function u

on the plate surface are finally written as

cu =
4v1

3ω1
+
a

3
− 4k

27ω1

[
10
( v1

ω1

)2

+ 2
v1

ω1
a+ a2

]
+O(k2), k → 0,

u(x, 0) = −
√(a+ cu

2

)2

− t2
[
v1 + ω1

a− cu
2
− k
(a− cu

2

)2

(3.5)

− (ω1 − k(a− cu))
t

2
− k

6

((a+ cu
2

)2

+ 2t2
)]
, t = x+

a− cu
2

.
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The approximate solutions obtained above need to be refined because the next approximations of the velocity
potential Φ on S1 and the separation point c also contain terms of order h−4. Therefore, it is necessary to continue
the process of constructing successive approximations and consider the boundary-value problems in the regions D
and G. Determining the asymptotic form of the potential Φ3 = u− Φ1 at a large distance from the plate

Φ3 = − h−2c4y

π(x2 + y2)
− . . . , c4 = 8−1(a+ c)2c1ξ1,

we formulate the problem of eliminating the discrepancies caused by the function Φ3 on the immovable boundary S3

(problem for the potential Φ4). The asymptotic form of the function Φ4 in the vicinity of the plate is derived similarly
to the asymptotic form of the potential Φ2:

Φ4 = −π−1c4ξ1yh
−4 − . . . .

After this, we eliminate the discrepancies caused by the function Φ4 on the plate surface. The problem for eliminating
the discrepancies on S1 has the form of (3.4), where the functions u and g are replaced by v = Φ1 + Φ3 + Φ5 and
g1 = g + (c4ξ1/π)h−4, respectively. As a result, the refined point cu and the function u on S1 are determined from
formulas (3.5), in which the term (c4ξ1/π)h−4 is added to the relation for v1. Thus, we find the third approximation
of the solution of the initial problem. We note that the next approximations add terms of higher order smallness
than h−4.

Several elementary transformations for the separation point c yield the asymptotic formula

c = c∞ +
1
3

(a+ c∞
2

)3

(ξ1h−2 − ph−3 + qh−4) +O(h−5), h→∞,

p = [(5a− 3c∞)ξ2 + (3c∞ − a)η1]/4,

16q = (7a2 − 6ac∞ + 3c2∞)ξ3 + 2(a+ c∞)2ξ2
1 + (3c∞ − a)(5a− 3c∞)η2 − (a2 − 2ac∞ + 5c2∞)µ1,

where c∞ is related to the velocities v0 and ω by formula (2.7).
To simplify the following representations, we assume that the region D is symmetric with respect to the

axis y. In this case, ξ2 = 0 and η1 = 0, and, hence, p = 0. The asymptotic expressions for the momentum I, the
angular moment M , and the momentum point x0 are written as

I = −ρω1
π

4

(a+ c

2

)3[
1 +

µ1

256
(a+ c)3(5c− 3a)h−4

]
+O(h−5), h→∞,

M = −ρω1
π

32

(a+ c

2

)3[
5a− 3c− µ1

16
(a− c)2(a+ c)3h−4

]
+O(h−5), h→∞;

(3.6)

x0 = −5a− 3c
8

+
µ1

2048
(a+ c)5h−4 +O(h−5), h→∞. (3.7)

More detailed asymptotic formulas for I, M , and x0 are derived by substituting the relations for ω1 and c

into (3.6) and (3.7), respectively, with subsequent series expansion in powers of h−1. The asymptotic coefficients
obtained in such a manner are expressed in terms of the velocities v0 and ω, which are assumed to be independent
of h.

In the impact problem, the specified parameters are obviously the external impact momentum P and its
point x0. In this case, the impact-induced plate velocities v0 and ω are determined from the system of nonlinear
equations (1.9). We note that the separation point c depends only on the momentum point x0. To determine
this point, we obtain a nonlinear equation in the form of (3.7) for large h. Fixing x0 and solving this equation
asymptotically for c, we have

c = c∞ − µ1(a+ c∞)5h−4/768 +O(h−5), h→∞, (3.8)

where c∞ is related to x0 by formula (2.9).
4. Appendices. We assume that in the case of both an unbounded fluid and a bounded fluid, the separation

impact on the plate is induced by the action of an external impact momentum applied at the point (x0, 0). Then,
for sufficiently large h, formula (3.8) allows one to conclude on the effect of the tank walls of arbitrary shape on
the zone of fluid particle separation from the plate surface. The problem reduces to determining the sign of the
coefficient µ1, which depends only on the shape of the tank walls. For µ1 > 0, the separation zone increases, and
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for µ1 < 0, it decreases compared with the case of an unbounded fluid. For µ1 = 0, the question remains open.
Examples describing all possible cases are given below:
— for a horizontal layer,

µ1 = 21π4/(2880b4) > 0;

— for a vertical layer,

µ1 = −π4/(120b4) < 0;

— for a truncated circular lune,

µ1 =
8
c4

∞∫
0

λ(1− 2λ2) cosh (π − β0)λ dλ
sinh πλ cosh β0λ

, b = −c cot β0, 0 < β0 < π.

Here b is the characteristic size of the region D0. In the first example, this is the depth of the fixed layer, in the
second case, this is half the distance between the vertical walls, and in the third case, the coordinate of the center
of the lune arc.

The truncated circular lune is the region bounded by a straight-line segment (y = 0, −c < x < c) and the
circular arc passing through the points x = ±c. For b < 0 (b > 0), the constant µ1 < 0 (µ1 > 0), and the sign of µ1

changes with passage through a semicircle (tank shape is a half-cylinder) for which µ1 = 0.
Thus, a tank shaped like a half-cylinder has little effect on the zone of fluid particle separation from the

plate surface.
Conclusions. An algorithm for constructing asymptotic solutions for linear problems of hydrodynamic

impact for large h was proposed in [6–8]. In the present paper, this algorithm is extended to a nonlinear problem.
The asymptotic expressions obtained were used to study the effect of tank walls of various shapes on the zone of
fluid particle separation from the plate surface. It has been established that depending on the tank walls, this zone
can either increase or decrease compared with the case of an unbounded fluid.

The proposed asymptotic approach can be employed to solve other mixed problems of mathematical physics
with an a priori unknown contact area.

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 01-01-00105
and 00-15-96188).
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